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Abstract

We investigate how the strength of entorhinal cortical inputs during training a!ects learned
performance using computer simulations of a minimal computational model of hippocampal
region CA3. After the model learns two partially overlapping sequences, it is tested on two
contradictory prediction problems * disambiguation and goal-"nding. Relative to total
activity, the activity level of entorhinal inputs during learning profoundly a!ects performance
on each task. The optimal input levels di!er for the two sequence prediction problems, but
a small region of overlap exists where both tasks can usually be performed successfully. This
sensitivity to relative input activity suggests critical tests of the model. ( 2000 Elsevier Science
B.V. All rights reserved.
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1. Introduction

A biologically plausible, neural-like network model of the hippocampus solves
a range of problems, including sequence completion and prediction [3,4]. A funda-
mental aspect of hippocampal models is the relationship between the feedback
excitation of CA3 recurrent neurons versus the feedforward excitation provided by the
entorhinal cortex both directly and indirectly through the dentate gyrus [1,3,7].
Although we have argued that the feedback in#uence for "ring CA3 neurons must be
greater than the feedforward in#uence [3,4], we have not characterized the sensitivity
of our hippocampal model to the relationship between these two excitatory in#uences.
Here the relevant comparisons are made on two contradictory sequence prediction
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Fig. 1. The hippocampal model. Area CA3 of the hippocampus is modeled by a set of 4096 neurons.
A di!erent EC/DG input projects to each neuron of the CA3 system, forcing that CA3 neuron to "re upon
activation of its one and only EC/DG input.

problems; disambiguation, where the model must be able to distinguish between two
overlapping sequences, and goal-"nding, where the model must transition from one
sequence to the other (Fig. 2). The performance of the model is dependent upon
the relative proportion of feedforward and recurrent excitation. Because the model
shows a well-de"ned sensitivity to this relative excitation, explicit parametric des-
criptions of this sensitivity can make strong predictions for testing by experimental
neuroscientists.

2. Methods

The network, a model of region CA3 of the hippocampus, is a sparsely
connected (10%), recurrent excitatory system (for more details see [4]). In addition
to the recurrent connections, each of the 4096 McCulloch-Pitts neurons receives
an external input that represents the entorhinal cortex and dentate gyrus
(EC/DG) inputs. This single input is hypothesized to be very powerful if activated
(Fig. 1).

The model uses a post-synaptic associative modi"cation rule [2] that is disabled
during testing. For details of the computations performed by the elements of the
network, see [8] (Shon et al., this volume). The activity of the network (the number of
neurons active on a given time-step) is analyzed in terms of the fraction of external
inputs I(t) and the fraction of neurons "red by recurrent activity R(t) on that time-step.
Without the time variable, the term I refers to the average I(t) across all time-steps for
that trial. Activity #uctuations are controlled by two inhibitory interneurons and
a resting conductance (K

R
, K

I
and K

0
, respectively). Across training the total activity

#uctuates due to imprecise activity control. To make the simulations more reliable,
the value of feedback inhibition (K

R
) is varied after each trial to maintain more nearly

constant activity levels.
Each training trial consists of one of the two sequences, each 12 patterns long. Each

individual input pattern of the sequences corresponds to a set of neurons in the
network that are activated for a single time-step by an external connection. As Fig. 2
shows, each input sequence contains three orthogonal subsequences. The patterns
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Fig. 2. A schematic of the input sequences. Two input sequences are presented to the network. Each
sequence is composed of 12 patterns. The EC/DG input patterns are broken up into three orthogonal
subsequences * the initial subsequence, the shared subsequence and the tail subsequence. A pattern
consists of a set of neurons being turned on for one time-step. The patterns within a subsequence have
a slow shift rate, that is, each pattern has 85% of its neurons in common with the patterns preceding and
following it.

within each subsequence have a slow shift rate; that is, each pattern has several
neurons in common with the patterns immediately preceding and immediately follow-
ing it. Notably, the two sequences share a common, central subsequence of three
patterns (a, b, and c of Fig. 1). There are 350 presentations of each sequence, with the
presentation of the two sequences interspersed.

Testing consists of sequence completion in response to a partial input. A cosine
comparison (the normalized dot product of two vectors) is used to compare the
network states that evolve in response to the test input with those produced by
a complete sequence of input patterns. By de"nition, the largest value at each
time-step is the decoded network state at that moment. The networks are "rst tested
on the disambiguation task. From each starting point (1 or A of Fig. 2), the network
must predict the appropriate path to the end of the learned sequence (12 or L,
respectively). In this problem, the test input is only activated for a single time-step. In
the goal-"nding task, the network must predict the path to an alternate goal (e.g. from
1 to L) using a partial goal description. The partial goal description consists of a subset
(8}26%) of the neurons from the goal pattern (e.g. L when starting at pattern 1). These
neurons are active throughout testing and produce an induced attractor [5]. There are
at least two ways a simulation can solve the goal-"nding problem. It can reiterate
a learned sequence and transition smoothly from sequence 1 to sequence 2, or it can
jump to its goal without passing through the choice point or its neighbors. When the
simulation jumps to the goal state it does not reproduce the patterns around the
choice point (e.g. c of Fig. 1).

There are two sources of randomness in the model, the initial connectivity
of the neurons, and the initial randomization of activity before each trial of
training. Because simulations have di!erent initial connectivities, there is a range
of performance across simulations. For each combination of activity level and
input size, a set of 10 simulations (i.e. 10 initial connectivities) are run and tested. Each
of these 10 trained networks is tested with 10 di!erent initial activities on both
problems.
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Fig. 3. (a) Input strength interacts with total activity to a!ect disambiguation performance. The strength of
the EC/DG input a!ects the probability a simulation will solve the disambiguation problem. Network
performance measures the percentage of networks, out of a set of ten, that perform disambiguation
successfully. The curves extend further to the right when activity is raised. (b) Normalization of input
activity aligns disambiguation performance curves. If the abscissa from Fig. 3a is changed to I, the fraction
of total network activity accounted for by the input neurons, the performance curves for each activity level
line up more closely. Apparently, the optimal level for I is between 0.1 and 0.2 for the disambiguation
problem.

3. Results and discussion

The simulations suggest several general hypotheses about information processing
in the hippocampus. First, for any one task, there exists an optimal level of input
activity. Second, at this optimum, the recurrent activation is stronger (i.e. "res more
neurons) than the input activity. Third, although the disambiguation and goal-"nding
tasks have di!erent optimal levels of input activity, there is an in-between level of
activity that is not far from the optima of either task.

Fig. 3a shows that, as a function of total activity, there is an optimal level of input
activation, and this level yields 100% performance on the disambiguation task. As
total activity increases from 3% to 6%, the simulations become more robust, in the
sense that a large percentage of simulations can perform the disambiguation problem
across a larger range of inputs. For each total activity level the simulations begin to
fail at a certain level of input activity. The input size relative to the total activity
becomes important.

In the region of best performance on the disambiguation task, the recurrent
connections account for a larger percentage of the total activity than the input
connections. The disambiguation performance curves as a function of total activity
become quite similar when graphed against I (Fig. 3b). Apparently, the ratio of
external input to total activity (I) is important and determines whether a network can
encode a sequence usefully [4]. The ideal relative level of input activity for the
disambiguation task is between 10% and 20% of the total network activity (i.e.,
0.1(I(0.2).

In contrast to the disambiguation task, goal-"nding has a slightly di!erent optimal
level of input, as seen in Fig. 4. The performance levels have been optimized for path
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Fig. 4. Disambiguation and goal-"nding are di!erentially a!ected by level of I. There are di!erent optimal
levels of I for di!erent tasks. As I increases, disambiguation performance reaches a peak before goal-"nding
performance. While goal-"nding continues to climb as I increases beyond 0.3, at that value of I the networks
are jumping to the goal state rather than following a path. Simulations were run at &6% activity for both
tasks.

following goal-"nding. Here the ideal I for goal-"nding is between 0.2 and 0.3.
Although not perfectly overlapping with disambiguation, a compromise can be
reached at I"0.2, where both disambiguation and goal-"nding are near optimal.

4. How the network solves the problems

There are two kinds of information that are dynamically represented by the pattern
of cell "ring at any given time. The external activity I(t) represents the immediate
present while the recurrent activity R(t) carries information forward from the past
(also called context past). The R(t) activity at each time t is excited by the previous
activities, I(t!1) and R(t!1). If an I(t!1) is large relative to its companion
R(t!1), then less information from the more distant past, i.e. before t!1, will be
coded in the present R(t).

Fig. 4 shows that disambiguation is stronger than goal-"nding for 0.1(I(0.2.
A simulation is able to "nd a code that will take it through each sequence reliably. In
these cases, the R activity is able to carry information about the initial unshared
subsequence across the shared subsequence (a, b, and c of Fig. 2).

To quantify this carrying of information across the shared subsequence, we exam-
ined the coding distinction between a simulation's learned cell "ring patterns for
c when they appeared in one sequence versus the other (c

1
vs. c

2
, Fig. 5) for di!erent

levels of external activity. A simulation that disambiguates the two sequences must
code c di!erently for each sequence. For 0.1(I(0.2, the cosine value of c

1
vs. c

2
is

less than 0.4. If I is larger, (0.2(I(0.3) the c's become more similar, and disambigua-
tion performance begins to decline. Apparently, as the cosine value increases beyond
0.4, I(t!1) comes to dominate over R(t!1) in determining R(t) activity.

On the far left of Fig. 4, where I is very low ((0.05), the model fails on the
disambiguation task. Here, Fig. 5 shows that the cosine similarity between c

1
and
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Fig. 5. c
1

and c
2

show increasing similarity as I increases. For disambiguation to be successful, the end
pattern of the shared subsequence (c of Fig. 2), must be coded di!erently when it appears in one sequence
versus the other (see text). The similarity of cell "ring to c in the two situations increases as I increases,
except at the "rst point of the graph which is explained in the text. In order for the two c's to be coded
di!erently, the network must retain some information about the initial subsequence across the "rst two
patterns, a and b, of the shared subsequence. A cosine comparison is used to compare the codes used by the
network for c. Simulations were run at &6% activity.

c
2

for this I is about 0.9. The high cosine value of this anomalous point is most likely
due to the R(t) activity of the simulation falling to near-zero values during training on
the initial subsequence, and rising for presentation of the shared subsequence (which is
presented twice as often during training). The R(t) activity generated by the shared
subsequence is apparently una!ected by the small I(t!1) in#uence of the tail
subsequence, because the cosine similarity of the two sequences extends all the way to
the end of the sequences.

For a slightly higher value of I (0.056), the simulations fail at disambiguation two
out of ten times despite c

1
and c

2
being quite di!erent (cosine &0.1). In these cases,

the tail ends of the two sequences are coded similarly (cosine values greater than 0.8
were seen when comparing end of sequence activation patterns between the two
sequences) by the end of training. Here, the external activity I(t!1) is strong enough
to overcome the network's propensity [6] for following random sequences but not
strong enough to overcome the similarity of the overlapping subsequence. R(t)
activities for the time-step following c are heavily in#uenced by the I(t!1) activity
generated at c. The R(t) activity of G and 7 are thus driven to be similar to one another
(Fig. 5). With repeated training, this tendency towards similarity cascades forward.
After many training cycles, both the shared and tail subsequences of the two sequences
are represented by a highly similar set of active neurons.

For values of I greater than 0.3, I(t!1) activity overwhelms R(t!1) activity in
determining R(t) and the subsequences become coded too similarly for disambigua-
tion to be successful at all.

In order to solve the goal-"nding problem to our satisfaction, the simulation must
be able to both follow a path and reach the goal. For the extreme values of I (I(0.05;
I'0.3) the simulation is able to do goal-"nding by jumping to the "nal goal pattern,
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but it is unable to follow a path, so this performance is unacceptable. In the range of
optimal disambiguation performance (0.1(I(0.2), goal-"nding is not performed
well by the simulations. As Fig. 5 shows, c

1
and c

2
are coded di!erently for these

values of I (less than 0.2 similarity). Goal-"nding performance improves as the cosine
comparison between c

1
and c

2
gets larger (0.2(I(0.3). Here, the sub-sequences are

coded similarly enough that, with the prompt from the partial goal description,
a network can switch paths. However without that prompt, disambiguation would be
performed. In this region of I, where disambiguation and goal-"nding can be per-
formed simultaneously by a single network, the networks are using a truly #exible
code to represent the two sequences. Thus, only by achieving a balance of input
activity and recurrent activity can the network be trained to solve both tasks.
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